skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balakrishnan, Venkataramanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary In this work, we provide new analysis for a preconditioning technique called structured incomplete factorization (SIF) for symmetric positive definite matrices. In this technique, a scaling and compression strategy is applied to construct SIF preconditioners, where off‐diagonal blocks of the original matrix are first scaled and then approximated by low‐rank forms. Some spectral behaviors after applying the preconditioner are shown. The effectiveness is confirmed with the aid of a type of two‐dimensional and three‐dimensional discretized model problems. We further show that previous studies on the robustness are too conservative. In fact, the practical multilevel version of the preconditioner has a robustness enhancement effect, and is unconditionally robust (or breakdown free) for the model problems regardless of the compression accuracy for the scaled off‐diagonal blocks. The studies give new insights into the SIF preconditioning technique and confirm that it is an effective and reliable way for designing structured preconditioners. The studies also provide useful tools for analyzing other structured preconditioners. Various spectral analysis results can be used to characterize other structured algorithms and study more general problems. 
    more » « less